Chapter 12: Problem 11
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{x^{2}} d x $$
Chapter 12: Problem 11
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{1}^{\infty} \frac{1}{x^{2}} d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a spreadsheet to complete the table for the specified values of \(a\) and \(n\) to demonstrate that \(\lim _{x \rightarrow \infty} x^{n} e^{-a x}=0, \quad a>0, n>0\) \begin{tabular}{|l|l|l|l|l|} \hline\(x\) & 1 & 10 & 25 & 50 \\ \hline\(x^{n} e^{-a x}\) & & & & \\ \hline \end{tabular} $$ a=\frac{1}{2}, n=5 $$
Determine whether the improper integral diverges or converges. Evaluate the integral if it converges. $$ \int_{0}^{\infty} \frac{5}{e^{2 x}} d x $$
Decide whether the integral is improper. Explain your reasoning. $$ \int_{0}^{1} \frac{2 x-5}{x^{2}-5 x+6} d x $$
Consider the region satisfying the inequalities. Find the area of the region. $$ y \leq \frac{1}{x^{2}}, y \geq 0, x \geq 1 $$
Use the error formulas to find \(n\) such that the error in the approximation of the definite integral is less than \(0.0001\) using (a) the Trapezoidal Rule and (b) Simpson's Rule. $$ \int_{1}^{3} \frac{1}{x} d x $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.