Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 29

Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{0}^{2} \frac{1}{\sqrt[3]{x-1}} d x $$

Problem 30

Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{0}^{2} \frac{1}{(x-1)^{4 / 3}} d x $$

Problem 30

Find the indefinite integral. (Hint: Integration by parts is not required for all the integrals.) $$ \int \frac{1}{x \ln x} d x $$

Problem 30

Use partial fractions to find the indefinite integral. $$ \int \frac{x^{4}}{(x-1)^{3}} d x $$

Problem 30

Use a program similar to the Simpson's Rule program on page 906 with \(n=6\) to approximate the indicated normal probability. The standard normal probability density function is \(f(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}\). If \(x\) is chosen at random from a population with this density, then the probability that \(x\) lies in the interval \([a, b]\) is \(P(a \leq x \leq b)=\int_{a}^{b} f(x) d x\). $$ P(0 \leq x \leq 2) $$

Problem 30

Use the table of integrals in this section to find the indefinite integral. $$ \int \frac{2 x}{(1-3 x)^{2}} d x $$

Problem 31

Use partial fractions to find the indefinite integral. $$ \int \frac{3 x^{2}+3 x+1}{x\left(x^{2}+2 x+1\right)} d x $$

Problem 31

Find the indefinite integral. (Hint: Integration by parts is not required for all the integrals.) $$ \int \frac{\ln x}{x^{2}} d x $$

Problem 31

Use a program similar to the Simpson's Rule program on page 906 with \(n=6\) to approximate the indicated normal probability. The standard normal probability density function is \(f(x)=(1 / \sqrt{2 \pi}) e^{-x^{2} / 2}\). If \(x\) is chosen at random from a population with this density, then the probability that \(x\) lies in the interval \([a, b]\) is \(P(a \leq x \leq b)=\int_{a}^{b} f(x) d x\). $$ P(0 \leq x \leq 4) $$

Problem 31

Determine whether the improper integral diverges or converges. Evaluate the integral if it converges, and check your results with the results obtained by using the integration capabilities of a graphing utility. $$ \int_{3}^{4} \frac{1}{\sqrt{x^{2}-9}} d x $$

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Math Textbooks