Chapter 11: Problem 9
Find the indefinite integral and check the result by differentiation. $$ \int(1+2 x)^{4}(2) d x $$
Chapter 11: Problem 9
Find the indefinite integral and check the result by differentiation. $$ \int(1+2 x)^{4}(2) d x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Midpoint Rule with \(n=4\) to approximate the area of the region bounded by the graph of \(f\) and the \(x\) -axis over the interval. Compare your result with the exact area. Sketch the region. $$ f(x)=4-x^{2} \quad[-2,2] $$
Use the Trapezoidal Rule with \(n=4\) to approximate the definite integral. $$ \int_{0}^{4} \sqrt{1+x^{2}} d x $$
The integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral. $$ \int_{-1}^{1}\left[\left(1-x^{2}\right)-\left(x^{2}-1\right)\right] d x $$
The integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral. $$ \int_{0}^{4}\left[(x+1)-\frac{1}{2} x\right] d x $$
Use a graphing utility to graph the region bounded by the graphs of the functions. Write the definite integrals that represent the area of the region. (Hint: Multiple integrals may be necessary.) $$ f(x)=x\left(x^{2}-3 x+3\right), g(x)=x^{2} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.