Chapter 11: Problem 78
Use the value \(\int_{0}^{2} x^{3} d x=4\) to evaluate each definite integral. Explain your reasoning. (a) \(\int_{-2}^{0} x^{3} d x\) (b) \(\int_{-2}^{2} x^{3} d x\) (c) \(\int_{0}^{2} 3 x^{3} d x\)
Chapter 11: Problem 78
Use the value \(\int_{0}^{2} x^{3} d x=4\) to evaluate each definite integral. Explain your reasoning. (a) \(\int_{-2}^{0} x^{3} d x\) (b) \(\int_{-2}^{2} x^{3} d x\) (c) \(\int_{0}^{2} 3 x^{3} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeYou are given the rate of investment \(d l / d t\). Find the capital accumulation over a five-year period by evaluating the definite integral Capital accumulation \(=\int_{0}^{5} \frac{d l}{d t} d t\) where \(t\) is the time in years. $$ \frac{d I}{d t}=500 $$
The integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral. $$ \int_{0}^{4}\left[(x+1)-\frac{1}{2} x\right] d x $$
The integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral. $$ \int_{-4}^{0}\left[(x-6)-\left(x^{2}+5 x-6\right)\right] d x $$
Find the area of the region. $$ \begin{aligned} &f(x)=3\left(x^{3}-x\right) \\ &g(x)=0 \end{aligned} $$
Determine which value best approximates the area of the region bounded by the graphs of \(f\) and \(g\). (Make your selection on the basis of a sketch of the region and not by performing any calculations.) \(f(x)=2-\frac{1}{2} x, \quad g(x)=2-\sqrt{x}\) (a) 1 (b) 6 (c) \(-3\) (d) 3 (e) 4
What do you think about this solution?
We value your feedback to improve our textbook solutions.