Chapter 11: Problem 77
Use the value \(\int_{0}^{1} x^{2} d x=\frac{1}{3}\) to evaluate each definite integral. Explain your reasoning. (a) \(\int_{-1}^{0} x^{2} d x\) (b) \(\int_{-1}^{1} x^{2} d x\) (c) \(\int_{0}^{1}-x^{2} d x\)
Chapter 11: Problem 77
Use the value \(\int_{0}^{1} x^{2} d x=\frac{1}{3}\) to evaluate each definite integral. Explain your reasoning. (a) \(\int_{-1}^{0} x^{2} d x\) (b) \(\int_{-1}^{1} x^{2} d x\) (c) \(\int_{0}^{1}-x^{2} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConsumer Trends For the years 1996 through 2004 , the per capita consumption
of fresh pineapples (in pounds per year) in the United States can be modeled
by \(C(t)=\left\\{\begin{array}{c}-0.046 t^{2}+1.07 t-2.9,6 \leq t \leq 10 \\\
-0.164 t^{2}+4.53 t-26.8,10
Use the Midpoint Rule with \(n=4\) to approximate the area of the region bounded by the graph of \(f\) and the \(x\) -axis over the interval. Compare your result with the exact area. Sketch the region. $$ f(x)=x^{2}-x^{3} \quad[-1,0] $$
Sketch the region bounded by the graphs of the functions and find the area of the region. $$ \begin{aligned} &y=x e^{-x^{2}}, y=0, x=0, x=1\\\ &\begin{gathered} 51 / 3 \end{gathered} \end{aligned} $$
Sketch the region bounded by the graphs of the functions and find the area of the region. $$ f(x)=\sqrt[3]{x}, g(x)=x $$
Find the change in cost \(C\), revenue \(R\), or profit \(P\), for the given marginal. In each case, assume that the number of units \(x\) increases by 3 from the specified value of \(x\). $$ \frac{d R}{d x}=48-3 x \quad x=12 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.