Chapter 11: Problem 36
Use a graphing utility to graph the region bounded by the graphs of the functions, and find the area of the region. $$ f(x)=3-2 x-x^{2}, g(x)=0 $$
Chapter 11: Problem 36
Use a graphing utility to graph the region bounded by the graphs of the functions, and find the area of the region. $$ f(x)=3-2 x-x^{2}, g(x)=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the Midpoint Rule with \(n=4\) to approximate the area of the region bounded by the graph of \(f\) and the \(x\) -axis over the interval. Compare your result with the exact area. Sketch the region. $$ f(x)=x^{2}+3 \quad[-1,1] $$
The integrand of the definite integral is a difference of two functions. Sketch the graph of each function and shade the region whose area is represented by the integral. $$ \int_{0}^{4}\left[(x+1)-\frac{1}{2} x\right] d x $$
Use the Midpoint Rule with \(n=4\) to approximate the area of the region. Compare your result with the exact area obtained with a definite integral. $$ f(y)=\frac{1}{4} y, \quad[2,4] $$
Use a symbolic integration utility to evaluate the definite integral. \(r^{6}\). $$ \int_{3}^{6} \frac{x}{3 \sqrt{x^{2}-8}} d x $$
Use the Midpoint Rule with \(n=4\) to approximate the area of the region bounded by the graph of \(f\) and the \(x\) -axis over the interval. Compare your result with the exact area. Sketch the region. $$ f(x)=x^{2}(3-x) \quad[0,3] $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.