Algebraic equations are mathematical statements that assert the equality of two expressions. They can include numbers, variables, and arithmetic operations. In solving the problem, we dealt mainly with linear algebraic equations.
Linear equations have the general form \( ax + by = c \), where \(a\), \(b\), and \(c\) are constants. The solution to these equations aims to determine the values of the variables that make the equation valid.
In our problem, we had two algebraic equations:
- \( x + y = 30000 \) for the total investment
- \( 0.03x + 0.045y = 1230 \) for the interest earned
By simultaneously solving these equations using algebraic techniques, such as substitution and simplification, we found the exact investment amounts needed for each fund.