Chapter 4: Problem 74
The following alternating series converge to given multiples of \(\pi .\) Find the value of \(N\) predicted by the remainder estimate such that the Nth partial sum of the series accurately approximates the left-hand side to within the given error. Find the minimum \(N\) for which the error bound holds, and give the desired approximate value in each case. Up to 15 decimals places, \(\pi=3.141592653589793 .\)[T] The alternating harmonic series converges because of cancellation among its terms. Its sum is known because the cancellation can be described explicitly. A random harmonic series is one of the form \(\sum_{n=1}^{\infty} \frac{S_{n}}{n}\), where \(s_{n}\) is a randomly generated sequence of \(\pm 1\) 's in which the values \(\pm 1\) are equally likely to occur. Use a random number generator to produce 1000 random \(\pm 1\) s and plot the partial sums \(S_{N}=\sum_{n=1}^{N} \frac{s_{n}}{n}\) of your random harmonic sequence for \(N=1\) to \(1000 .\) Compare to a plot of the first 1000 partial sums of the harmonic series.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.