Chapter 4: Problem 68
The following advanced exercises use a generalized ratio test to determine convergence of some series that arise in particular applications when tests in this chapter, including the ratio and root test, are not powerful enough to determine their convergence. The test states that if \(\lim _{n \rightarrow \infty} \frac{a_{2 n}}{a_{n}}<1 / 2\), then \(\sum a_{n}\) converges, while if \(\lim _{n \rightarrow \infty} \frac{a_{2 n+1}}{a_{n}}>1 / 2\), then \(\sum a_{n}\) diverges. Let \(a_{n}=\frac{1}{4} \frac{3}{6} \frac{5}{8} \cdots \frac{2 n-1}{2 n+2}=\frac{1 \cdot 3-5 \cdots(2 n-1)}{2^{n}(n+1) !} .\) Explain why the ratio test cannot determine convergence of \(\sum_{n=1}^{\infty} a_{n} .\) Use the fact that \(1-1 /(4 k)\) is increasing \(k\) to estimate \(\lim _{n \rightarrow \infty} \frac{a_{2 n}}{a_{n}}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.