The following advanced exercises use a generalized ratio test to determine
convergence of some series that arise in particular applications when tests in
this chapter, including the ratio and root test, are not powerful enough to
determine their convergence. The test states that if \(\lim _{n \rightarrow
\infty} \frac{a_{2 n}}{a_{n}}<1 / 2\), then \(\sum a_{n}\) converges, while if
\(\lim _{n \rightarrow \infty} \frac{a_{2 n+1}}{a_{n}}>1 / 2\), then \(\sum
a_{n}\) diverges.
Let \(a_{n}=\frac{1}{4} \frac{3}{6} \frac{5}{8} \cdots \frac{2 n-1}{2
n+2}=\frac{1 \cdot 3-5 \cdots(2 n-1)}{2^{n}(n+1) !} .\) Explain why the ratio
test cannot determine convergence of \(\sum_{n=1}^{\infty} a_{n} .\) Use the
fact that \(1-1 /(4 k)\) is increasing \(k\) to estimate \(\lim _{n \rightarrow
\infty} \frac{a_{2 n}}{a_{n}}\).