Chapter 7: Problem 74
Consistency of Volume Definitions The volume formulas in calculus are consistent with the standard formulas from geometry in the sense that they agree on objects to which both apply. (a) As a case in point, show that if you revolve the region enclosed by the semicircle \(y=\sqrt{a^{2}-x^{2}}\) and the \(x\) -axis about the \(x\) -axis to generate a solid sphere, the calculus formula for volume at the beginning of the section will give \((4 / 3) \pi a^{3}\) for the volume just as it should. (b) Use calculus to find the volume of a right circular cone of height \(h\) and base radius \(r .\)