$$
\begin{array}{l}{\text { Using Tangent Fins to Find Arc Length Assume } f
\text { is }} \\ {\text { smooth on }[a, b] \text { and partition the
interval }[a, b] \text { in the usual }} \\ {\text { way. In each subinterval
}\left[x_{k-1}, x_{k}\right] \text { construct the tangent fin at }} \\\
{\text { the point }\left(x_{k-1}, f\left(x_{k-1}\right)\right) \text { as
shown in the figure. }}\end{array}
$$
$$
\begin{array}{l}{\text { (a) Show that the length of the } k \text { th
tangent fin over the interval }} \\ {\left[x_{k-1}, x_{k}\right] \text {
equals }} \\ {\sqrt{\left(\Delta
x_{k}\right)^{2}+\left(f^{\prime}\left(x_{k-1}\right) \Delta
x_{k}\right)^{2}}}\end{array}
$$
$$
\begin{array}{l}{\text { (b) Show that }} \\ {\lim _{n \rightarrow \infty}
\sum_{k=1}^{n} \text { (length of } k \text { th tangent fin } )=\int_{a}^{b}
\sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x} \\ {\text { which is the length
} L \text { of the curve } y=f(x) \text { from } x=a} \\ {\text { to } x=b
.}\end{array}
$$