Chapter 6: Problem 84
Trigonometric Substitution Suppose \(u=\tan ^{-1} x\) (a) Use the substitution \(x=\tan u, d x=\sec ^{2} u d u\) to show that \(\int_{0}^{\sqrt{3}} \frac{d x}{\sqrt{1+x^{2}}}=\int_{0}^{\pi / 3} \sec u d u\) (b) Use the hint in Exercise 45 to evaluate the definite integral without a calculator.