Chapter 6: Problem 81
Trigonometric Substitution Suppose \(u=\sin ^{-1} x .\) Then \(\cos u>0\) . (a) Use the substitution \(x=\sin u, d x=\cos u d u\) to show that $$\int \frac{d x}{\sqrt{1-x^{2}}}=\int 1 d u$$ (b) Evaluate \(\int 1 d u\) to show that \(\int \frac{d x}{\sqrt{1-x^{2}}}=\sin ^{-1} x+C\)