Chapter 6: Problem 66
Solving Differential Equations Let \(\frac{d y}{d x}=\frac{1}{x}\) . (a) Show that \(y=\ln x+C\) is a solution to the differential equation in the interval \((0, \infty)\) (b) Show that \(y=\ln (-x)+C\) is a solution to the differential equation in the interval \((-\infty, 0)\) (c) Writing to Learn Explain why \(y=\ln |x|+C\) is a solution to the differential equation in the domain \((-\infty, 0) \cup(0, \infty)\) (d) Show that the function \(y=\left\\{\begin{array}{l}{\ln (-x)+C_{1}} \\ {\ln x+C_{2}}\end{array}\right.\) \(x<0\) \(x>0\) is a solution to the differential equation for any values of \(C_{1}\) and \(C_{2}\)