Chapter 6: Problem 66
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{2} \frac{e^{x} d x}{3+e^{x}}$$
Chapter 6: Problem 66
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{2} \frac{e^{x} d x}{3+e^{x}}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int \tan ^{4} x d x, \quad \tan ^{2} x=\sec ^{2} x-1$$
Multiple choice \(\int_{2}^{3} \frac{3}{(x-1)(x+2)} d x\mathrm{}\) (A) \(-\frac{33}{20}\) (B) \(-\frac{9}{20}\) (C) \(\ln \left(\frac{5}{2}\right)\) (D) \(\ln \left(\frac{8}{5}\right)\) (E) \(\ln \left(\frac{2}{5}\right)\)
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{\sin (2 t+1)}{\cos ^{2}(2 t+1)} d t$$
You should solve the following problems without using a graphing calculator. True or False For small values of \(t\) the solution to logistic differential equation \(d P / d t=k P(100-P)\) that passes through the point \((0,10)\) resembles the solution to the differential equa- tion \(d P / d t=k P\) that passes through the point \((0,10) .\) Justify your answer.
Multiple Choice If \(\int x^{2} \cos x d x=h(x)-\int 2 x \sin x d x,\) then \(h(x)=\) (A) \(2 \sin x+2 x \cos x+C\) (B) \(x^{2} \sin x+C\) (C) \(2 x \cos x-x^{2} \sin x+C\) (D) \(4 \cos x-2 x \sin x+C\) (E) \(\left(2-x^{2}\right) \cos x-4 \sin x+C\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.