Chapter 6: Problem 50
In Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int 4 \cos ^{2} x d x, \quad \cos 2 x=1-2 \cos ^{2} x$$
Chapter 6: Problem 50
In Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int 4 \cos ^{2} x d x, \quad \cos 2 x=1-2 \cos ^{2} x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 67 and \(68,\) make a substitution \(u=\cdots(\) an expression in \(x), \quad d u=\cdots .\) Then (a) integrate with respect to \(u\) from \(u(a)\) to \(u(b)\) . (b) find an antiderivative with respect to \(u,\) replace \(u\) by the expression in \(x,\) then evaluate from \(a\) to \(b\) . $$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$$
In Exercises \(25-28\) , evaluate the integral analytically. Support your answer using NINT. $$\int_{-3}^{2} e^{-2 x} \sin 2 x d x$$
Differential Equation Potpourri For each of the following differential equations, find at least one particular solution. You will need to call on past experience with functions you have differentiated. For a greater challenge, find the general solution. (a) \(y^{\prime}=x\) (b)\(y^{\prime}=-x\) (c)\(y^{\prime}=y\) (d)\(y^{\prime}=-y\) (e)\(y^{\prime \prime}=-y\)
In Exercises \(17-24,\) use the indicated substitution to evaluate the integral. Confirm your answer by differentiation. $$\int 8\left(y^{4}+4 y^{2}+1\right)^{2}\left(y^{3}+2 y\right) d y, \quad u=y^{4}+4 y^{2}+1$$
In Exercises 31 and \(32,\) a population function is given. (a) Show that the function is a solution of a logistic differential equation. Identify \(k\) and the carrying capacity. (b) Writing to Learn Estimate \(P(0)\) . Explain its meaning in the context of the problem. Spread of Measles The number of students infected by measles in a certain school is given by the formula \(P(t)=\frac{200}{1+e^{5.3-t}}\) where \(t\) is the number of days after students are first exposed to an infected student.
What do you think about this solution?
We value your feedback to improve our textbook solutions.