Chapter 6: Problem 5
In Exercises \(5-14,\) evaluate the integral. $$\int \frac{x-12}{x^{2}-4 x} d x$$
Chapter 6: Problem 5
In Exercises \(5-14,\) evaluate the integral. $$\int \frac{x-12}{x^{2}-4 x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice \(\int x \sin (5 x) d x=\) (A) \(-x \cos (5 x)+\sin (5 x)+C\) (B) \(-\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (C) \(-\frac{x}{5} \cos (5 x)+\frac{1}{5} \sin (5 x)+C\) (D) \(\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (E) \(5 x \cos (5 x)-\sin (5 x)+C\)
In Exercises \(25-28\) , evaluate the integral analytically. Support your answer using NINT. $$\int_{-3}^{2} e^{-2 x} \sin 2 x d x$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{7} \frac{d x}{x+2}$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{1}^{2} \frac{d t}{t-3}$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{3} \sqrt{y+1} d y$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.