Chapter 6: Problem 48
In Exercises \(47-50,\) use integration by parts to establish the reduction formula. $$\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$$
Chapter 6: Problem 48
In Exercises \(47-50,\) use integration by parts to establish the reduction formula. $$\int x^{n} \sin x d x=-x^{n} \cos x+n \int x^{n-1} \cos x d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \sec ^{2}(x+2) d x$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{\pi / 6} \cos ^{-3} 2 \theta \sin 2 \theta d \theta$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{7} \frac{d x}{x+2}$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{2} \frac{e^{x} d x}{3+e^{x}}$$
Second-Order Potpourri For each of the following second-order differential equations, find at least one particular solution. You will need to call on past experience with functions you have differentiated. For a significantly greater challenge, find the general solution (which will involve two unknown constants) (a)\(y^{\prime \prime}=x\) (b)\(y^{\prime \prime}=-x\) (c)\(y^{\prime \prime}=-\sin x\) (d)\(y^{n}=y\) (e)\(y^{\prime \prime}=-y\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.