Chapter 6: Problem 42
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{40 d x}{x^{2}+25}$$
Chapter 6: Problem 42
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{40 d x}{x^{2}+25}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int \sec ^{4} x d x, \quad \sec ^{2} x=1+\tan ^{2} x$$
In Exercises 67 and \(68,\) make a substitution \(u=\cdots(\) an expression in \(x), \quad d u=\cdots .\) Then (a) integrate with respect to \(u\) from \(u(a)\) to \(u(b)\) . (b) find an antiderivative with respect to \(u,\) replace \(u\) by the expression in \(x,\) then evaluate from \(a\) to \(b\) . $$\int_{0}^{1} \frac{x^{3}}{\sqrt{x^{4}+9}} d x$$
Multiple Choice \(\int x \sin (5 x) d x=\) (A) \(-x \cos (5 x)+\sin (5 x)+C\) (B) \(-\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (C) \(-\frac{x}{5} \cos (5 x)+\frac{1}{5} \sin (5 x)+C\) (D) \(\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (E) \(5 x \cos (5 x)-\sin (5 x)+C\)
In Exercises \(29-32,\) solve the differential equation. $$\frac{d y}{d \theta}=\theta \sec \theta \tan \theta$$
In Exercises \(17-24,\) use the indicated substitution to evaluate the integral. Confirm your answer by differentiation. $$\int \frac{9 r^{2} d r}{\sqrt{1-r^{3}}}, \quad u=1-r^{3}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.