Chapter 6: Problem 36
Limited Growth Equation Another differential equation that models limited growth of a population \(P\) in an environment with carrying capacity \(M\) is \(d P / d t=k(M-P)\) (where \(k>0\) and \(M>0\) ). (a) Show that \(P=M-A e^{-k t},\) where \(A\) is a constant determined by an appropriate initial condition. (b) What is lim \(P(t) ? ~ M\) (c) For what time \(t \geqslant 0\) is the population growing the fastest? (d) Writing to Learn How does the growth curve in this model differ from the growth curve in the logistic model? See answ