Chapter 6: Problem 33
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{\ln ^{6} x}{x} d x$$
Chapter 6: Problem 33
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{\ln ^{6} x}{x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int\left(\cos ^{4} x-\sin ^{4} x\right) d x, \quad \cos 2 x=\cos ^{2} x-\sin ^{2} x$$
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \frac{40 d x}{x^{2}+25}$$
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{1} r \sqrt{1-r^{2}} d r$$
Multiple Choice \(\int_{0}^{2} e^{2 x} d x=\) (A) \(\frac{e^{4}}{2} \quad(\mathbf{B}) e^{4}-1 \quad\) (C) \(e^{4}-2 \quad\) (D) \(2 e^{4}-2 \quad(\mathbf{E}) \frac{e^{4}-1}{2}\)
In Exercises \(17-24,\) use the indicated substitution to evaluate the integral. Confirm your answer by differentiation. $$\int 8\left(y^{4}+4 y^{2}+1\right)^{2}\left(y^{3}+2 y\right) d y, \quad u=y^{4}+4 y^{2}+1$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.