Chapter 6: Problem 30
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int 3(\sin x)^{-2} d x$$
Chapter 6: Problem 30
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int 3(\sin x)^{-2} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the integral \(\int x^{n} e^{x} d x .\) Use integration by parts to evaluate the integral if (a) \(n=1\) (b) \(n=2\) (c) \(n=3\) (d) Conjecture the value of the integral for any positive integer \(n\) (e) Writing to Learn Give a convincing argument that your conjecture in part (d) is true.
In Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int 2 \sin ^{2} x d x, \quad \cos 2 x=2 \sin ^{2} x-1$$
Trigonometric Substitution Suppose \(u=\tan ^{-1} x\) (a) Use the substitution \(x=\tan u, d x=\sec ^{2} u d u\) to show that \(\int \frac{d x}{1+x^{2}}=\int 1 d u\) (b) Evaluate \(\int 1 d u\) to show that \(\int \frac{d x}{1+x^{2}}=\tan ^{-1} x+C\)
In Exercises \(47-50,\) use integration by parts to establish the reduction formula. $$\int(\ln x)^{n} d x=x(\ln x)^{n}-n \int(\ln x)^{n-1} d x$$
Multiple Choice If \(\int x^{2} \cos x d x=h(x)-\int 2 x \sin x d x,\) then \(h(x)=\) (A) \(2 \sin x+2 x \cos x+C\) (B) \(x^{2} \sin x+C\) (C) \(2 x \cos x-x^{2} \sin x+C\) (D) \(4 \cos x-2 x \sin x+C\) (E) \(\left(2-x^{2}\right) \cos x-4 \sin x+C\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.