Chapter 6: Problem 29
In Exercises \(29-32,\) solve the differential equation. $$\frac{d y}{d x}=x^{2} e^{4 x}$$
Chapter 6: Problem 29
In Exercises \(29-32,\) solve the differential equation. $$\frac{d y}{d x}=x^{2} e^{4 x}$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice \(\int x \sin (5 x) d x=\) (A) \(-x \cos (5 x)+\sin (5 x)+C\) (B) \(-\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (C) \(-\frac{x}{5} \cos (5 x)+\frac{1}{5} \sin (5 x)+C\) (D) \(\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (E) \(5 x \cos (5 x)-\sin (5 x)+C\)
Multiple Choice If \(\int x^{2} \cos x d x=h(x)-\int 2 x \sin x d x,\) then \(h(x)=\) (A) \(2 \sin x+2 x \cos x+C\) (B) \(x^{2} \sin x+C\) (C) \(2 x \cos x-x^{2} \sin x+C\) (D) \(4 \cos x-2 x \sin x+C\) (E) \(\left(2-x^{2}\right) \cos x-4 \sin x+C\)
Multiple choice \(\int_{2}^{3} \frac{3}{(x-1)(x+2)} d x\mathrm{}\) (A) \(-\frac{33}{20}\) (B) \(-\frac{9}{20}\) (C) \(\ln \left(\frac{5}{2}\right)\) (D) \(\ln \left(\frac{8}{5}\right)\) (E) \(\ln \left(\frac{2}{5}\right)\)
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int s^{1 / 3} \cos \left(s^{4 / 3}-8\right) d s$$
Different Solutions? Consider the integral \(\int 2 \sec ^{2} x \tan x d x\) (a) Evaluate the integral using the substitution \(u=\tan x\) . (b) Evaluate the integral using the substitution \(u=\sec x\) . (c) Writing to Learn Explain why the different-looking answers in parts (a) and (b) are actually equivalent.
What do you think about this solution?
We value your feedback to improve our textbook solutions.