Chapter 6: Problem 21
\(\int \frac{x^{2}+x-1}{x^{2}-x} d x\)
Chapter 6: Problem 21
\(\int \frac{x^{2}+x-1}{x^{2}-x} d x\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(47-52,\) use the given trigonometric identity to set up a \(u\) -substitution and then evaluate the indefinite integral. $$\int \sin ^{3} 2 x d x, \quad \sin ^{2} 2 x=1-\cos ^{2} 2 x$$
In Exercises \(25-46,\) use substitution to evaluate the integral. $$\int \sec \left(\theta+\frac{\pi}{2}\right) \tan \left(\theta+\frac{\pi}{2}\right) d \theta$$
In Exercises \(25-28\) , evaluate the integral analytically. Support your answer using NINT. $$\int_{-3}^{2} e^{-2 x} \sin 2 x d x$$
Multiple choice \(\int_{2}^{3} \frac{3}{(x-1)(x+2)} d x\mathrm{}\) (A) \(-\frac{33}{20}\) (B) \(-\frac{9}{20}\) (C) \(\ln \left(\frac{5}{2}\right)\) (D) \(\ln \left(\frac{8}{5}\right)\) (E) \(\ln \left(\frac{2}{5}\right)\)
Multiple Choice \(\int_{0}^{2} e^{2 x} d x=\) (A) \(\frac{e^{4}}{2} \quad(\mathbf{B}) e^{4}-1 \quad\) (C) \(e^{4}-2 \quad\) (D) \(2 e^{4}-2 \quad(\mathbf{E}) \frac{e^{4}-1}{2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.