Chapter 6: Problem 2
In Exercises \(1-10,\) find the indefinite integral. $$\int x e^{x} d x$$
Chapter 6: Problem 2
In Exercises \(1-10,\) find the indefinite integral. $$\int x e^{x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeLogistic Differential Equation Show that the solution of the differential equation \(\frac{d P}{d t}=k P(M-P) \quad\) is \(\quad P=\frac{M}{1+A e^{-M k t}}\) where \(A\) is a constant determined by an appropriate initial condition.
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{1}^{2} \frac{d t}{t-3}$$
Group Activity Making Connections Suppose that $$\int f(x) d x=F(x)+C$$ (a) Explain how you can use the derivative of \(F(x)+C\) to confirm the integration is correct. (b) Explain how you can use a slope field of \(f\) and the graph of \(y=F(x)\) to support your evaluation of the integral. (c) Explain how you can use the graphs of \(y_{1}=F(x)\) and \(y_{2}=\int_{0}^{x} f(t) d t\) to support your evaluation of the integral. (d) Explain how you can use a table of values for \(y_{1}-y_{2}\) \(y_{1}\) and \(y_{2}\) defined as in part (c), to support your evaluation of the integral. (e) Explain how you can use graphs of \(f\) and \(\mathrm{NDER}\) of \(F(x)\) to support your evaluation of the integral. (f) Illustrate parts (a)- (e) for \(f(x)=\frac{x}{\sqrt{x^{2}+1}}\) .
In Exercises \(25-28\) , evaluate the integral analytically. Support your answer using NINT. $$\int_{-3}^{2} e^{-2 x} \sin 2 x d x$$
Guppy Population \(\mathrm{A} 2000\) -gallon tank can support no more than 150 guppies. Six guppies are introduced into the tank. Assume that the rate of growth of the population is \(\frac{d P}{d t}=0.0015 P(150-P)\) where time \(t\) is in weeks. (a) Find a formula for the guppy population in terms of \(t .\) (b) How long will it take for the guppy population to be 100? 125?
What do you think about this solution?
We value your feedback to improve our textbook solutions.