Chapter 6: Problem 12
In Exercises \(11-14\) , find the solution of the differential equation \(d y / d t=k y, k\) a constant, that satisfies the given conditions. $$k=-0.5, \quad y(0)=200$$
Chapter 6: Problem 12
In Exercises \(11-14\) , find the solution of the differential equation \(d y / d t=k y, k\) a constant, that satisfies the given conditions. $$k=-0.5, \quad y(0)=200$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice \(\int x \sin (5 x) d x=\) (A) \(-x \cos (5 x)+\sin (5 x)+C\) (B) \(-\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (C) \(-\frac{x}{5} \cos (5 x)+\frac{1}{5} \sin (5 x)+C\) (D) \(\frac{x}{5} \cos (5 x)+\frac{1}{25} \sin (5 x)+C\) (E) \(5 x \cos (5 x)-\sin (5 x)+C\)
Consider the integral \(\int x^{n} e^{x} d x .\) Use integration by parts to evaluate the integral if (a) \(n=1\) (b) \(n=2\) (c) \(n=3\) (d) Conjecture the value of the integral for any positive integer \(n\) (e) Writing to Learn Give a convincing argument that your conjecture in part (d) is true.
You should solve the following problems without using a graphing calculator. True or False If \(f^{\prime}(x)=g(x),\) then \(\int x g(x) d x=\) \(x f(x)-\int f(x) d x .\) Justify your answer.
In Exercises \(53-66,\) make a \(u\) -substitution and integrate from \(u(a)\) to \(u(b) .\) $$\int_{0}^{\pi / 6} \cos ^{-3} 2 \theta \sin 2 \theta d \theta$$
In Exercises 67 and \(68,\) make a substitution \(u=\cdots(\) an expression in \(x), \quad d u=\cdots .\) Then (a) integrate with respect to \(u\) from \(u(a)\) to \(u(b)\) . (b) find an antiderivative with respect to \(u,\) replace \(u\) by the expression in \(x,\) then evaluate from \(a\) to \(b\) . $$\int_{\pi / 6}^{\pi / 3}(1-\cos 3 x) \sin 3 x d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.