Chapter 5: Problem 70
Multiple Choice The area of the region enclosed between the graph of \(y=\sqrt{1-x^{4}}\) and the \(x\) -axis is $\mathrm (A) 0.886 (B) 1.253 (C) 1.414 (D) 1.571 (E) 1.748
Chapter 5: Problem 70
Multiple Choice The area of the region enclosed between the graph of \(y=\sqrt{1-x^{4}}\) and the \(x\) -axis is $\mathrm (A) 0.886 (B) 1.253 (C) 1.414 (D) 1.571 (E) 1.748
All the tools & learning materials you need for study success - in one app.
Get started for freeAverage Daily Holding cost Solon Container receives 450 drums of plastic pellets every 30 days. The inventory function (drums on hand as a function of days) is \(I(x)=450-x^{2} / 2\) (a) Find the average daily inventory (that is, the average value of \(I(x)\) for the 30 -day period). (b) If the holding cost for one drum is \(\$ 0.02\) per day, find the average daily holding cost (that is, the per-drum holding cost times the average daily inventory).
Writing to Learn If \(f\) is an even continuous function, give a graphical argument to explain why \(\int_{0}^{x} f(t) d t\) is odd
Graphing Calculator Challenge If \(k > 1 ,\) and if the average value of \(x ^ { k }\) on \([ 0 , k ]\) is \(k ,\) what is \(k ?\) Check your result with a CAS if you have one available.
In Exercises 1-6, (a) use the Trapezoidal Rule with n = 4 to approximate the value of the integral. (b) Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Finally, (c) find the integral's exact value to check your answer. $$\int_{1}^{2} \frac{1}{x} d x$$
Writing to Learn A dam released 1000\(\mathrm { m } ^ { 3 }\) of water at 10\(\mathrm { m } ^ { 3 / \mathrm { min } }\) and then released another 1000\(\mathrm { m } ^ { 3 }\) at 20\(\mathrm { m } ^ { 3 / \mathrm { min } }\) . What was the average rate at which the water was released? Give reasons for your answer.
What do you think about this solution?
We value your feedback to improve our textbook solutions.