Chapter 5: Problem 6
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{1}^{x} e^{u} \sec u d u$$
Chapter 5: Problem 6
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{1}^{x} e^{u} \sec u d u$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice If three equal subdivisions of \([-2,4]\) are used, what is the trapezoidal approximation of \(\int_{-2}^{4} \frac{e^{x}}{2} d x ?\) \begin{array}{l}{\text { (A) } e^{4}+e^{2}+e^{0}+e^{-2}} \\ {\text { (B) } e^{4}+2 e^{2}+2 e^{0}+e^{-2}} \\ {\text { (C) } \frac{1}{2}\left(e^{4}+e^{2}+e^{0}+e^{-2}\right)} \\ {\text { (D) } \frac{1}{2}\left(e^{4}+2 e^{2}+2 e^{0}+e^{-2}\right)} \\ {\text { (E) } \frac{1}{4}\left(e^{4}+2 e^{2}+2 e^{0}+e^{-2}\right)}\end{array}
In Exercises 13-18, (a) use Simpson's Rule with n = 4 to approximate the value of the integral and (b) find the exact value of the integral to check your answer. (Note that these are the same integrals as Exercises 1-6, so you can also compare it with the Trapezoidal Rule approximation.) $$\int_{0}^{2} x^{3} d x$$
Extending the ldeas Writing to Learn If \(f\) is an odd continuous function, give a graphical argument to explain why \(\int_{0}^{x} f(t) d t\) is even.
Use the inequality \(\sin x \leq x ,\) which holds for \(x \geq 0 ,\) to find an upper bound for the value of \(\int _ { 0 } ^ { 1 } \sin x d x . \)
Show that if \(F ^ { \prime } ( x ) = G ^ { \prime } ( x )\) on \([ a , b ] ,\) then \(F ( b ) - F ( a ) = G ( b ) - G ( a )\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.