Chapter 5: Problem 57
The function
\(f(x)=\left\\{\begin{array}{ll}{\frac{1}{x^{2}},} & {0
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Chapter 5: Problem 57
The function
\(f(x)=\left\\{\begin{array}{ll}{\frac{1}{x^{2}},} & {0
These are the key concepts you need to understand to accurately answer the question.
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the integral \(\int_{-1}^{1} \sin \left(x^{2}\right) d x\) $$\begin{array}{l}{\text { (a) Find } f^{\prime \prime} \text { for } f(x)=\sin \left(x^{2}\right)} \\ {\text { (b) Graph } y=f^{\prime \prime}(x) \text { in the viewing window }[-1,1] \text { by }[-3,3] \text { . }} \\\ {\text { (c) Explain why the graph in part (b) suggests that }\left|f^{\prime \prime}(x)\right| \leq 3} \\ {\text { for }-1 \leq x \leq 1 .} \\ {\text { (d) Show that the error estimate for the Trapezoidal Rule in this case becomes }}\end{array} $$ $$\left|E_{T}\right| \leq \frac{h^{2}}{2}$$ $$\begin{array}{l}{\text { (e) Show that the Trapezoidal Rule error will be less than or equal to } 0.01 \text { if } h \leq 0.1 .} \\ {\text { (f) How large must } n \text { be for } h \leq 0.1 ?}\end{array}$$
.In Exercises \(27-40\) , evaluate each integral using Part 2 of the Fundamental Theorem. Support your answer with NINT if you are unsure. $$\int_{0}^{\pi} \sin x d x$$
Multiple Choice What is the average value of the cosine function on the interval [ 1,5 ] ? \(\begin{array} { l l } { \text { (A) } - 0.990 } & { ( \text { B) } - 0.450 } \\\ { \text { (D) } 0.412 } & { ( \text { E) } 0.998 } \end{array}\)
Consider the integral \(\int_{0}^{\pi} \sin x d x\) (a) Use a calculator program to find the Trapezoidal Rule approximations for n = 10, 100, and 1000. (b) Record the errors with as many decimal places of accuracy as you can. (c) What pattern do you see? (d) Writing to Learn Explain how the error bound for \(E_{T}\) accounts for the pattern.
In Exercises \(41-44\) , find the total area of the region between the curve and the \(x\) -axis. $$y=2-x, \quad 0 \leq x \leq 3$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.