Chapter 5: Problem 56
In Exercises 55 and \(56,\) find \(K\) so that $$\int_{a}^{x} f(t) d t+K=\int_{b}^{x} f(t) d t$$ $$f(x)=\sin ^{2} x ; \quad a=0 ; \quad b=2$$
Chapter 5: Problem 56
In Exercises 55 and \(56,\) find \(K\) so that $$\int_{a}^{x} f(t) d t+K=\int_{b}^{x} f(t) d t$$ $$f(x)=\sin ^{2} x ; \quad a=0 ; \quad b=2$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(31 - 36 ,\) find the average value of the function on the interval, using antiderivatives to compute the integral. $$y = \sin x , \quad [ 0 , \pi ]$$
In Exercises \(23-26\) use a calculator program to find the Simpson's Rule approximations with \(n=50\) and \(n=100 .\) $$\int_{0}^{1} \sqrt{1+x^{4}} d x$$
The inequality sec \(x \geq 1 + \left( x ^ { 2 } / 2 \right)\) holds on \(( - \pi / 2 , \pi / 2 ) .\) Use it to find a lower bound for the value of \(\int _ { 0 } ^ { 1 } \sec x d x .\)
In Exercises 13-18, (a) use Simpson's Rule with n = 4 to approximate the value of the integral and (b) find the exact value of the integral to check your answer. (Note that these are the same integrals as Exercises 1-6, so you can also compare it with the Trapezoidal Rule approximation.) $$\int_{0}^{4} \sqrt{x} d x$$
Linearization Find the linearization of \(f(x)=2+\int_{0}^{x} \frac{10}{1+t} d t\) at \(x=0\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.