Chapter 5: Problem 56
In Exercises \(47-56,\) use graphs, your knowledge of area, and the fact that \(\quad\) $$\int_{0}^{1} x^{3} d x=\frac{1}{4}$$ to evaluate the integral. $$\int_{0}^{1} \sqrt[3]{x} d x$$
Chapter 5: Problem 56
In Exercises \(47-56,\) use graphs, your knowledge of area, and the fact that \(\quad\) $$\int_{0}^{1} x^{3} d x=\frac{1}{4}$$ to evaluate the integral. $$\int_{0}^{1} \sqrt[3]{x} d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the integral \(\int_{-1}^{1} \sin \left(x^{2}\right) d x\) $$\begin{array}{l}{\text { (a) Find } f^{\prime \prime} \text { for } f(x)=\sin \left(x^{2}\right)} \\ {\text { (b) Graph } y=f^{\prime \prime}(x) \text { in the viewing window }[-1,1] \text { by }[-3,3] \text { . }} \\\ {\text { (c) Explain why the graph in part (b) suggests that }\left|f^{\prime \prime}(x)\right| \leq 3} \\ {\text { for }-1 \leq x \leq 1 .} \\ {\text { (d) Show that the error estimate for the Trapezoidal Rule in this case becomes }}\end{array} $$ $$\left|E_{T}\right| \leq \frac{h^{2}}{2}$$ $$\begin{array}{l}{\text { (e) Show that the Trapezoidal Rule error will be less than or equal to } 0.01 \text { if } h \leq 0.1 .} \\ {\text { (f) How large must } n \text { be for } h \leq 0.1 ?}\end{array}$$
In Exercises 1-6, (a) use the Trapezoidal Rule with n = 4 to approximate the value of the integral. (b) Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Finally, (c) find the integral's exact value to check your answer. $$\int_{0}^{\pi} \sin x d x$$
Writing to Learn A dam released 1000\(\mathrm { m } ^ { 3 }\) of water at 10\(\mathrm { m } ^ { 3 / \mathrm { min } }\) and then released another 1000\(\mathrm { m } ^ { 3 }\) at 20\(\mathrm { m } ^ { 3 / \mathrm { min } }\) . What was the average rate at which the water was released? Give reasons for your answer.
Consider the integral \(\int_{0}^{\pi} \sin x d x\) (a) Use a calculator program to find the Trapezoidal Rule approximations for n = 10, 100, and 1000. (b) Record the errors with as many decimal places of accuracy as you can. (c) What pattern do you see? (d) Writing to Learn Explain how the error bound for \(E_{T}\) accounts for the pattern.
Multiple Choice If \(\int _ { 3 } ^ { 7 } f ( x ) d x = 5\) and \(\int _ { 3 } ^ { 7 } g ( x ) d x = 3 ,\) then all of the following must be true except (A) $$\int _ { 3 } ^ { 7 } f ( x ) g ( x ) d x = 15$$ (B) $$\int _ { 3 } ^ { 7 } [ f ( x ) + g ( x ) ] d x = 8$$ (C) $$\int _ { 3 } ^ { 7 } 2 f ( x ) d x = 10$$ (D) $$\int _ { 3 } ^ { 7 } [ f ( x ) - g ( x ) ] d x = 2$$ (E) $$\int _ { 7 } ^ { 3 } [ g ( x ) - f ( x ) ] d x = 2$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.