Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

In Exercises \(47-56,\) use graphs, your knowledge of area, and the fact that \(\quad\) $$\int_{0}^{1} x^{3} d x=\frac{1}{4}$$ to evaluate the integral. $$\int_{0}^{1} \sqrt[3]{x} d x$$

Short Answer

Expert verified
Therefore, the value of the integral \(\int_{0}^{1} \sqrt[3]{x} d x = \frac{3}{4}\)

Step by step solution

01

Understand the relationship between the given functions

We need to understand that \(x^{3}\) and \(\sqrt[3]{x}\) are inverse operations of each other. Therefore, the integral of one will inversely correspond to the other. That is, the integral of \(x^{3}\) from \(0\) to \(1\) is \(\frac{1}{4}\), then the integral of \(\sqrt[3]{x}\) from \(0\) to \(1\) will inversely correspond to \(\frac{1}{4}\).
02

Apply the power rule for integration

The formula for integrating a simple power of \(x\) is \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\), where \(C\) is the constant of integration. But, this case is a bit tricky because we are finding the integral of the cube root of \(x\), which can also be written as \(x^{1/3}\). By applying the power rule, the integral of \(x^{1/3}\) from \(0\) to \(1\) is given by \( \frac{x^{1/3 + 1}}{1/3 + 1} \Biggr|_0^1 \).
03

Calculate the definite integral

By simplifying, we get \(\frac{x^{4/3}}{4/3} \Biggr|_0^1\). By plugging the limits (0 and 1), we then get the result \(\frac{1^{4/3}}{4/3} - \frac{0^{4/3}}{4/3} = \frac{3}{4}\).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the integral \(\int_{-1}^{1} \sin \left(x^{2}\right) d x\) $$\begin{array}{l}{\text { (a) Find } f^{\prime \prime} \text { for } f(x)=\sin \left(x^{2}\right)} \\ {\text { (b) Graph } y=f^{\prime \prime}(x) \text { in the viewing window }[-1,1] \text { by }[-3,3] \text { . }} \\\ {\text { (c) Explain why the graph in part (b) suggests that }\left|f^{\prime \prime}(x)\right| \leq 3} \\ {\text { for }-1 \leq x \leq 1 .} \\ {\text { (d) Show that the error estimate for the Trapezoidal Rule in this case becomes }}\end{array} $$ $$\left|E_{T}\right| \leq \frac{h^{2}}{2}$$ $$\begin{array}{l}{\text { (e) Show that the Trapezoidal Rule error will be less than or equal to } 0.01 \text { if } h \leq 0.1 .} \\ {\text { (f) How large must } n \text { be for } h \leq 0.1 ?}\end{array}$$

In Exercises 1-6, (a) use the Trapezoidal Rule with n = 4 to approximate the value of the integral. (b) Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Finally, (c) find the integral's exact value to check your answer. $$\int_{0}^{\pi} \sin x d x$$

Writing to Learn A dam released 1000\(\mathrm { m } ^ { 3 }\) of water at 10\(\mathrm { m } ^ { 3 / \mathrm { min } }\) and then released another 1000\(\mathrm { m } ^ { 3 }\) at 20\(\mathrm { m } ^ { 3 / \mathrm { min } }\) . What was the average rate at which the water was released? Give reasons for your answer.

Consider the integral \(\int_{0}^{\pi} \sin x d x\) (a) Use a calculator program to find the Trapezoidal Rule approximations for n = 10, 100, and 1000. (b) Record the errors with as many decimal places of accuracy as you can. (c) What pattern do you see? (d) Writing to Learn Explain how the error bound for \(E_{T}\) accounts for the pattern.

Multiple Choice If \(\int _ { 3 } ^ { 7 } f ( x ) d x = 5\) and \(\int _ { 3 } ^ { 7 } g ( x ) d x = 3 ,\) then all of the following must be true except (A) $$\int _ { 3 } ^ { 7 } f ( x ) g ( x ) d x = 15$$ (B) $$\int _ { 3 } ^ { 7 } [ f ( x ) + g ( x ) ] d x = 8$$ (C) $$\int _ { 3 } ^ { 7 } 2 f ( x ) d x = 10$$ (D) $$\int _ { 3 } ^ { 7 } [ f ( x ) - g ( x ) ] d x = 2$$ (E) $$\int _ { 7 } ^ { 3 } [ g ( x ) - f ( x ) ] d x = 2$$

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free