Chapter 5: Problem 55
In Exercises \(47-56,\) use graphs, your knowledge of area, and the fact that \(\quad\) $$\int_{0}^{1} x^{3} d x=\frac{1}{4}$$ to evaluate the integral. $$\int_{0}^{1}\left(x^{3}-1\right) d x$$
Chapter 5: Problem 55
In Exercises \(47-56,\) use graphs, your knowledge of area, and the fact that \(\quad\) $$\int_{0}^{1} x^{3} d x=\frac{1}{4}$$ to evaluate the integral. $$\int_{0}^{1}\left(x^{3}-1\right) d x$$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(19-30,\) evaluate the integral using antiderivatives, as in Example \(4 .\) $$\int _ { 0 } ^ { 1 } e ^ { x } d x$$
Consider the integral \(\int_{-1}^{1} \sin \left(x^{2}\right) d x\) $$\begin{array}{l}{\text { (a) Find } f^{\prime \prime} \text { for } f(x)=\sin \left(x^{2}\right)} \\ {\text { (b) Graph } y=f^{\prime \prime}(x) \text { in the viewing window }[-1,1] \text { by }[-3,3] \text { . }} \\\ {\text { (c) Explain why the graph in part (b) suggests that }\left|f^{\prime \prime}(x)\right| \leq 3} \\ {\text { for }-1 \leq x \leq 1 .} \\ {\text { (d) Show that the error estimate for the Trapezoidal Rule in this case becomes }}\end{array} $$ $$\left|E_{T}\right| \leq \frac{h^{2}}{2}$$ $$\begin{array}{l}{\text { (e) Show that the Trapezoidal Rule error will be less than or equal to } 0.01 \text { if } h \leq 0.1 .} \\ {\text { (f) How large must } n \text { be for } h \leq 0.1 ?}\end{array}$$
Writing to Learn A driver averaged 30\(\mathrm { mph }\) on a 150 -mile trip and then returned over the same 150 miles at the rate of 50\(\mathrm { mph }\) . He figured that his average speed was 40\(\mathrm { mph }\) for the entire trip. (a) What was his total distance traveled? (b) What was his total time spent for the trip? (c) What was his average speed for the trip? (d) Explain the error in the driver's reasoning.
In Exercises \(15-18,\) find the average value of the function on the interval without integrating, by appealing to the geometry of the region between the graph and the \(x\) -axis. $$f ( t ) = \sin t , \quad [ 0,2 \pi ]$$
In Exercises 1-6, (a) use the Trapezoidal Rule with n = 4 to approximate the value of the integral. (b) Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Finally, (c) find the integral's exact value to check your answer. $$\int_{1}^{2} \frac{1}{x} d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.