Chapter 5: Problem 4
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{-2}^{x} \sqrt{1+e^{5 t}} d t$$
Chapter 5: Problem 4
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{-2}^{x} \sqrt{1+e^{5 t}} d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeExtending the ldeas Writing to Learn If \(f\) is an odd continuous function, give a graphical argument to explain why \(\int_{0}^{x} f(t) d t\) is even.
Writing to Learn In Example 2 (before rounding) we found the average temperature to be 65.17 degrees when we used the integral approximation, yet the average of the 13 discrete temperatures is only 64.69 degrees. Considering the shape of the temperature curve, explain why you would expect the average of the 13 discrete temperatures to be less than the average value of the temperature function on the entire interval.
In Exercises \(19-30,\) evaluate the integral using antiderivatives, as in Example \(4 .\) $$\int _ { - 1 } ^ { 1 } \frac { 1 } { 1 + x ^ { 2 } } d x$$
Multiple Choice If the average value of the function \(f\) on the interval \([ a , b ]\) is \(10 ,\) then \(\int _ { a } ^ { b } f ( x ) d x =\) (A) \(\frac { 10 } { b - a } \quad\) (B) \(\frac { f ( a ) + f ( b ) } { 10 } \quad\) (C) \(10 b - 10 a\) \(( \mathbf { D } ) \frac { b - a } { 10 } \quad ( \mathbf { E } ) \frac { f ( b ) + f ( a ) } { 20 }\)
Multiple Choice If \(\int _ { 3 } ^ { 7 } f ( x ) d x = 5\) and \(\int _ { 3 } ^ { 7 } g ( x ) d x = 3 ,\) then all of the following must be true except (A) $$\int _ { 3 } ^ { 7 } f ( x ) g ( x ) d x = 15$$ (B) $$\int _ { 3 } ^ { 7 } [ f ( x ) + g ( x ) ] d x = 8$$ (C) $$\int _ { 3 } ^ { 7 } 2 f ( x ) d x = 10$$ (D) $$\int _ { 3 } ^ { 7 } [ f ( x ) - g ( x ) ] d x = 2$$ (E) $$\int _ { 7 } ^ { 3 } [ g ( x ) - f ( x ) ] d x = 2$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.