Chapter 5: Problem 38
Consider the integral \(\int_{-1}^{1} \sin \left(x^{2}\right) d x\) $$\begin{array}{l}{\text { (a) Find } f^{(4)} \text { for } f(x)=\sin \left(x^{2}\right). \text { (You may want to check your work with a CAS if you have one available.) }}\end{array} $$ (b) Graph \(y=f^{(4)}(x)\) in the viewing window \([-1,1]\) by \([-30,10] .\) (c) Explain why the graph in part (b) suggests that \(\left|f^{(4)}(x)\right| \leq 30\) for \(-1 \leq x \leq 1\) (d) Show that the error estimate for Simpson's Rule in this case becomes $$\left|E_{S}\right| \leq \frac{h^{4}}{3}$$ (e) Show that the Simpson's Rule error will be less than or equal to 0.01 if \(h \leq 0.4 .\) (f) How large must \(n\) be for \(h \leq 0.4 ?\)