Chapter 5: Problem 31
True or False If \(f\) is a positive, continuous, increasing function on \([a, b],\) then LRAM gives an area estimate that is less than the true area under the curve. Justify your answer.
Chapter 5: Problem 31
True or False If \(f\) is a positive, continuous, increasing function on \([a, b],\) then LRAM gives an area estimate that is less than the true area under the curve. Justify your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(31 - 36 ,\) find the average value of the function on the interval, using antiderivatives to compute the integral. $$y = \frac { 1 } { 1 + x ^ { 2 } } , \quad [ 0,1 ]$$
Multiple Choice If three equal subdivisions of \([-2,4]\) are used, what is the trapezoidal approximation of \(\int_{-2}^{4} \frac{e^{x}}{2} d x ?\) \begin{array}{l}{\text { (A) } e^{4}+e^{2}+e^{0}+e^{-2}} \\ {\text { (B) } e^{4}+2 e^{2}+2 e^{0}+e^{-2}} \\ {\text { (C) } \frac{1}{2}\left(e^{4}+e^{2}+e^{0}+e^{-2}\right)} \\ {\text { (D) } \frac{1}{2}\left(e^{4}+2 e^{2}+2 e^{0}+e^{-2}\right)} \\ {\text { (E) } \frac{1}{4}\left(e^{4}+2 e^{2}+2 e^{0}+e^{-2}\right)}\end{array}
Multiple Choice At \(x=\pi,\) the linearization of \(f(x)=\int_{\pi}^{x} \cos ^{3} t d t\) (A) \(y=-1\) (B) \(y=-x \quad\) (C) \(y=\pi\) (D) \(y=x-\pi \quad\) (E) \(y=\pi-x\)
True or False The average value of a function \(f\) on \([ a , b ]\) always lies between \(f ( a )\) and \(f ( b ) .\) Justify your answer.
Multiple Choice Using 8 equal subdivisions of the interval \([2,12],\) the LRAM approximation of \(\int_{2}^{12} f(x) d x\) is 16.6 and the trapezoidal approximation is \(16.4 .\) What is the RRAM approximation? $$ \begin{array}{l}{\text { (A) } 16.2 \text { (B) } 16.5} \\ {\text { (C) } 16.6 \text { (D) } 16.8} \\ {\text { (E) It cannot be determined from the given information. }}\end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.