Chapter 5: Problem 28
In Exercises \(23-28,\) use areas to evaluate the integral. $$\int_{a}^{\sqrt{3} a} x d x, \quad a>0$$
Chapter 5: Problem 28
In Exercises \(23-28,\) use areas to evaluate the integral. $$\int_{a}^{\sqrt{3} a} x d x, \quad a>0$$
All the tools & learning materials you need for study success - in one app.
Get started for freeMultiple Choice If \(\int _ { 2 } ^ { 5 } f ( x ) d x = 12\) and \(\int _ { 5 } ^ { 8 } f ( x ) d x = 4\) then all of the following must be true except (A) $$\int _ { 2 } ^ { 8 } f ( x ) d x = 16$$ (B) $$\int _ { 2 } ^ { 5 } f ( x ) d x - \int _ { 5 } ^ { 8 } 3 f ( x ) d x = 0$$ (C) $$\int _ { 5 } ^ { 2 } f ( x ) d x = - 12$$ (D) $$\int _ { - 5 } ^ { - 8 } f ( x ) d x = - 4$$ (E) $$\int _ { 2 } ^ { 6 } f ( x ) d x + \int _ { 6 } ^ { 8 } f ( x ) d x = 16$$
In Exercises \(15-18,\) find the average value of the function on the interval without integrating, by appealing to the geometry of the region between the graph and the \(x\) -axis. $$f ( t ) = \sin t , \quad [ 0,2 \pi ]$$
True or False For a given value of \(n,\) the Trapezoidal Rule with \(n\) subdivisions will always give a more accurate estimate of \(\int_{a}^{b} f(x) d x\) than a right Riemann sum with \(n\) subdivisions. Justify your answer.
In Exercises \(41-44\) , find the total area of the region between the curve and the \(x\) -axis. $$y=2-x, \quad 0 \leq x \leq 3$$
In Exercises 13-18, (a) use Simpson's Rule with n = 4 to approximate the value of the integral and (b) find the exact value of the integral to check your answer. (Note that these are the same integrals as Exercises 1-6, so you can also compare it with the Trapezoidal Rule approximation.) $$\int_{0}^{\pi} \sin x d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.