Chapter 5: Problem 25
In Exercises \(21-26,\) construct a function of the form \(y=\int^{x} f(t) d t+C\) that satisfies the given conditions. $$\frac{d y}{d x}=\cos ^{2} 5 x,\( and \)y=-2\( when \)x=7$$
Chapter 5: Problem 25
In Exercises \(21-26,\) construct a function of the form \(y=\int^{x} f(t) d t+C\) that satisfies the given conditions. $$\frac{d y}{d x}=\cos ^{2} 5 x,\( and \)y=-2\( when \)x=7$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the function values in the following table and the Trapezoidal Rule with \(n=6\) to approximate \(\int_{2}^{8} f(x) d x\) $$\begin{array}{c|cccccc}{x} & {2} & {3} & {4} & {5} & {6} & {7} & {8} \\\ \hline f(x) & {16} & {19} & {17} & {14} & {13} & {16} & {20}\end{array}$$
True or False The average value of a function \(f\) on \([ a , b ]\) always lies between \(f ( a )\) and \(f ( b ) .\) Justify your answer.
Writing to Learn A dam released 1000\(\mathrm { m } ^ { 3 }\) of water at 10\(\mathrm { m } ^ { 3 / \mathrm { min } }\) and then released another 1000\(\mathrm { m } ^ { 3 }\) at 20\(\mathrm { m } ^ { 3 / \mathrm { min } }\) . What was the average rate at which the water was released? Give reasons for your answer.
Revenue from Marginal Revenue Suppose that a company's marginal revenue from the manufacture and sale of egg beaters is \(\frac{d r}{d x}=2-\frac{2}{(x+1)^{2}}\)where \(r\) is measured in thousands of dollars and \(x\) in thousands of units. How much money should the company expect from a production run of \(x=3\) thousand eggbeaters? To find out, integrate the marginal revenue from \(x=0\) to $x=3 . \quad \$
In Exercises 13-18, (a) use Simpson's Rule with n = 4 to approximate the value of the integral and (b) find the exact value of the integral to check your answer. (Note that these are the same integrals as Exercises 1-6, so you can also compare it with the Trapezoidal Rule approximation.) $$\int_{0}^{4} \sqrt{x} d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.