Chapter 5: Problem 16
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{5 x^{2}}^{25} \frac{t^{2}-2 t+9}{t^{3}+6} d t$$
Chapter 5: Problem 16
In Exercises \(1-20,\) find \(d y / d x\). $$y=\int_{5 x^{2}}^{25} \frac{t^{2}-2 t+9}{t^{3}+6} d t$$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse the function values in the following table and the Trapezoidal Rule with \(n=6\) to approximate \(\int_{2}^{8} f(x) d x\) $$\begin{array}{c|cccccc}{x} & {2} & {3} & {4} & {5} & {6} & {7} & {8} \\\ \hline f(x) & {16} & {19} & {17} & {14} & {13} & {16} & {20}\end{array}$$
In Exercises 1-6, (a) use the Trapezoidal Rule with n = 4 to approximate the value of the integral. (b) Use the concavity of the function to predict whether the approximation is an overestimate or an underestimate. Finally, (c) find the integral's exact value to check your answer. $$\int_{0}^{2} x d x$$
Multiple Choice What is \(\lim _{h \rightarrow 0} \frac{1}{h} \int_{x}^{x+h} f(t) d t\) \(\begin{array}{llll}{\text { (A) } 0} & {\text { (B) } 1} & {\text { (C) } f^{\prime}(x)} & {\text { (D) } f(x)} & {\text { (E) nonexistent }}\end{array}\)
Multiple Choice Let \(f(x)=\int_{a}^{x} \ln (2+\sin t) d t .\) If \(f(3)=4\) then \(f(5)=\) \(\begin{array}{lllll}{\text { (A) } 0.040} & {\text { (B) } 0.272} & {\text { (C) } 0.961} & {\text { (D) } 4.555} & {\text { (E) } 6.667}\end{array}\)
In Exercises \(19-30,\) evaluate the integral using antiderivatives, as in Example \(4 .\) $$\int _ { 1 } ^ { e } \frac { 1 } { x } d x$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.