Chapter 4: Problem 70
The Linearization is the Best Linear Approximation Suppose that \(y=f(x)\) is differentiable at \(x=a\) and that \(g(x)=m(x-a)+c(m\) and \(c\) constants). If the error \(E(x)=f(x)-g(x)\) were small enough near \(x=a,\) we might think of using \(g\) as a linear approximation of \(f\) instead of the linearization \(L(x)=f(a)+f^{\prime}(a)(x-a) .\) Show that if we impose on \(g\) the conditions i. \(E(a)=0\) ii. \(\lim _{x \rightarrow a} \frac{E(x)}{x-a}=0\) then \(g(x)=f(a)+f^{\prime}(a)(x-a) .\) Thus, the linearization gives the only linear approximation whose error is both zero at \(x=a\) and negligible in comparison with \((x-a)\) .