Chapter 4: Problem 7
In Exercises \(7-12\) , use the Concavity Test to determine the intervals on which the graph of the function is (a) concave up and (b) concave down. $$y=4 x^{3}+21 x^{2}+36 x-20$$
Chapter 4: Problem 7
In Exercises \(7-12\) , use the Concavity Test to determine the intervals on which the graph of the function is (a) concave up and (b) concave down. $$y=4 x^{3}+21 x^{2}+36 x-20$$
All the tools & learning materials you need for study success - in one app.
Get started for freeSpeed Trap A highway patrol airplane flies 3 mi above a level, straight road at a constant rate of 120 mph. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi the linstant the distance is decreasing at the rate of 160 \(\mathrm{mph}\) . Find the car's speed along the highway.
Frictionless Cart A small frictionless cart, attached to the wall by a spring, is pulled 10 cm from its rest position and released at time \(t=0\) to roll back and forth for 4 sec. Its position at time \(t\) is \(s=10 \cos \pi t .\) (a) What is the cart's maximum speed? When is the cart moving that fast? Where is it then? What is the magnitude of the acceleration then? (b) Where is the cart when the magnitude of the acceleration is greatest? What is the cart's speed then?
Geometric Mean The geometric mean of two positive numbers \(a\) and \(b\) is \(\sqrt{a b}\) . Show that for \(f(x)=1 / x\) on any interval \([a, b]\) of positive numbers, the value of \(c\) in the conclusion of the Mean Value Theorem is \(c=\sqrt{a b} .\)
$$ \begin{array}{l}{\text { Multiple Choice If } f(x)=\cos x, \text { then the Mean Value }} \\ {\text { Theorem guarantees that somewhere between } 0 \text { and } \pi / 3, f^{\prime}(x)=} \\ {\text { (A) }-\frac{3}{2 \pi} \quad \text { (B) }-\frac{\sqrt{3}}{2} \quad(\mathbf{C})-\frac{1}{2} \quad \text { (D) } 0}\end{array} $$
Writing to Learn Find the linearization of \(f(x)=\sqrt{x+1}+\sin x\) at \(x=0 .\) How is it related to the individual linearizations for \(\sqrt{x+1}\) and \(\sin x ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.