Chapter 4: Problem 66
Quadratic Approximations (a) Let \(Q(x)=b_{0}+b_{1}(x-a)+b_{2}(x-a)^{2}\) be a quadratic approximation to \(f(x)\) at \(x=a\) with the properties: \(\begin{aligned} \text { i. } Q(a) &=f(a) \\ \text { ii. } Q^{\prime}(a) &=f^{\prime}(a) \\ \text { ii. } & Q^{\prime \prime}(a)=f^{\prime \prime}(a) \end{aligned}\) Determine the coefficients \(b_{0}, b_{1},\) and \(b_{2}\) (b) Find the quadratic approximation to \(f(x)=1 /(1-x)\) at \(x=0 .\) (c) Graph \(f(x)=1 /(1-x)\) and its quadratic approximation at \(x=0 .\) Then zoom in on the two graphs at the point \((0,1) .\) Comment on what you see. (d) Find the quadratic approximation to \(g(x)=1 / x\) at \(x=1\) Graph \(g\) and its quadratic approximation together. Comment on what you see. (e) Find the quadratic approximation to \(h(x)=\sqrt{1+x}\) at \(x=0 .\) Graph \(h\) and its quadratic approximation together. Comment on what you see. (f) What are the linearizations of \(f, g,\) and \(h\) at the respective points in parts \((b),(d),\) and \((e) ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.