Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Quartic Polynomial Functions Let \(f(x)=\) \(a x^{4}+b x^{3}+c x^{2}+d x+e\) with \(a \neq 0\) (a) Show that the graph of \(f\) has 0 or 2 points of inflection. (b) Write a condition that must be satisfied by the coefficients if the graph of \(f\) has 0 or 2 points of inflection.

Short Answer

Expert verified
The graph of a quartic function has either 0 or 2 points of inflection. The conditions to determine the number of inflection points are derived from the discriminant of the second derivative. If the discriminant of the quadratic function \(12ax^{2}+6bx+2c=0\) is negative (i.e., \(b^2 - 4ac < 0\)), then there are 0 inflection points. If the discriminant is zero or positive (i.e., \(b^2 - 4ac \geq 0\)), then there are 2 inflection points.

Step by step solution

01

Compute First derivative of f(x)

The first derivative of the function \(f(x)\) is given by \(f'(x) = 4ax^{3}+3bx^{2}+2cx+d\). This derivative tells us the rate of change of the function.
02

Compute Second derivative of f(x)

The second derivative of the function \(f(x)\) is given by \(f''(x) = 12ax^{2}+6bx+2c\). This second derivative tells us if the function is concave up or down.
03

Solving f''(x) for zeros

In order to determine the points of inflection, we set the second derivative equation equals to zero, \(12ax^{2}+6bx+2c=0\). This gives us the 'x' values at which the inflection points may appear.
04

Conditions determining number of Inflection Points

The discriminant of the quadratic equation \(12ax^{2}+6bx+2c=0\) is given by \(D = b^2 - 4ac\). If \(D < 0\), the equation has no roots which mean \(0\) inflection points. If \(D \geq 0\), the equation has one or two roots which means \(2\) inflection points.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Multiple Choice A particle is moving around the unit circle (the circle of radius 1 centered at the origin). At the point \((0.6,\) 0.8\()\) the particle has horizontal velocity \(d x / d t=3 .\) What is its vertical velocity \(d y / d t\) at that point? \(\begin{array}{lllll}{\text { (A) }-3.875} & {\text { (B) }-3.75} & {\text { (C) }-2.25} & {\text { (D) } 3.75} & {\text { (E) } 3.875}\end{array}\)

Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$

$$ \begin{array}{l}{\text { Multiple Choice All of the following functions satisfy the }} \\ {\text { conditions of the Mean Value Theorem on the interval }[-1,1]} \\ {\text { except } }\end{array} $$ \((\mathbf{A}) \sin x\) \((\mathbf{B}) \sin ^{-1} x\) \((\mathrm{C}) x^{5 / 3}\) (D) \(x^{3 / 5}\) (E) \(\frac{x}{x-2}\)

Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?

Finding Parameter Values What values of \(a\) and \(b\) make \(f(x)=x^{3}+a x^{2}+b x\) have (a) a local maximum at \(x=-1\) and a local minimum at \(x=3 ?\) (b) a local minimum at \(x=4\) and a point of inflection at \(x=1 ?\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free