Chapter 4: Problem 63
Airplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$