Chapter 4: Problem 62
Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.
Chapter 4: Problem 62
Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.
All the tools & learning materials you need for study success - in one app.
Get started for freeGroup Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?
Growing Sand Pile Sand falls from a conveyor belt at the rate of 10 \(\mathrm{m}^{3} / \mathrm{min}\) onto the top of a conical pile. The height of the pile is always three-eighths of the base diameter. How fast are the (a) height and (b) radius changing when the pile is 4 \(\mathrm{m}\) high? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)
Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)
Speed Trap A highway patrol airplane flies 3 mi above a level, straight road at a constant rate of 120 mph. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi the linstant the distance is decreasing at the rate of 160 \(\mathrm{mph}\) . Find the car's speed along the highway.
Multiple Choice A particle is moving around the unit circle (the circle of radius 1 centered at the origin). At the point \((0.6,\) 0.8\()\) the particle has horizontal velocity \(d x / d t=3 .\) What is its vertical velocity \(d y / d t\) at that point? \(\begin{array}{lllll}{\text { (A) }-3.875} & {\text { (B) }-3.75} & {\text { (C) }-2.25} & {\text { (D) } 3.75} & {\text { (E) } 3.875}\end{array}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.