Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Production Level Suppose \(c(x)=x^{3}-20 x^{2}+20,000 x\) is the cost of manufacturing \(x\) items. Find a production level that will minimize the average cost of making \(x\) items.

Short Answer

Expert verified
The production level that will minimize the average cost of making \(x\) items is \(x = 10\).

Step by step solution

01

Compute the average cost function

The average cost function can be obtained by dividing the given cost function by \(x\). Hence, the average cost function \(A(x) = c(x)/x = (x^{3}-20 x^{2}+20,000 x)/x = x^{2}-20 x+20,000\.
02

Find the derivative of the average cost function

The derivative of the average cost is obtained using the power rule and the constant rule. Hence, \(A'(x) = 2x - 20\).
03

Find critical points

To find the critical points, set \(A'(x) = 0\) and solve for \(x\) to find values of \(x\) that yield a horizontal tangent line. Solving \(2x-20 = 0\) gives \(x = 10\).
04

Confirm the minimum point

Derive second version A''(x) = 2 which is always positive. So, x = 10 is indeed at a minimum point.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Group Activity Cardiac Output In the late 1860 s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Wurtzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 liters a minute. At rest it is likely to be a bit under 6 \(\mathrm{L} / \mathrm{min}\) . If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 \(\mathrm{L} / \mathrm{min.}\) Your cardiac output can be calculated with the formula $$$=\frac{Q}{D}$$ where \(Q\) is the number of milliliters of \(\mathrm{CO}_{2}\) you exhale in a minute and \(D\) is the difference between the \(\mathrm{CO}_{2}\) concentration \((\mathrm{mL} / \mathrm{L})\) in the blood pumped to the lungs and the \(\mathrm{CO}_{2}\) concentration in the blood returning from the lungs. With \(Q=233 \mathrm{mL} / \mathrm{min}\) and \(D=97-56=41 \mathrm{mL} / \mathrm{L}\) $$y=\frac{233 \mathrm{mL} / \mathrm{min}}{41 \mathrm{mL} / \mathrm{L}} \approx 5.68 \mathrm{L} / \mathrm{min}$$ fairly close to the 6 \(\mathrm{L} / \mathrm{min}\) that most people have at basal (resting) conditions. (Data courtesy of J. Kenneth Herd, M.D. Quillan College of Medicine, East Tennessee State University.) Suppose that when \(Q=233\) and \(D=41,\) we also know that \(D\) is decreasing at the rate of 2 units a minute but that \(Q\) remains unchanged. What is happening to the cardiac output?

Growing Sand Pile Sand falls from a conveyor belt at the rate of 10 \(\mathrm{m}^{3} / \mathrm{min}\) onto the top of a conical pile. The height of the pile is always three-eighths of the base diameter. How fast are the (a) height and (b) radius changing when the pile is 4 \(\mathrm{m}\) high? Give your answer in \(\mathrm{cm} / \mathrm{min.}\)

Multiple Choice If the volume of a cube is increasing at 24 \(\mathrm{in}^{3} / \mathrm{min}\) and the surface area of the cube is increasing at 12 \(\mathrm{in}^{2} / \mathrm{min}\) , what is the length of each edge of the cube? \(\mathrm{}\) \(\begin{array}{lll}{\text { (A) } 2 \text { in. }} & {\text { (B) } 2 \sqrt{2} \text { in. (C) } \sqrt[3]{12} \text { in. (D) } 4 \text { in. }}\end{array}\)

Speed Trap A highway patrol airplane flies 3 mi above a level, straight road at a constant rate of 120 mph. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi the linstant the distance is decreasing at the rate of 160 \(\mathrm{mph}\) . Find the car's speed along the highway.

Multiple Choice A particle is moving around the unit circle (the circle of radius 1 centered at the origin). At the point \((0.6,\) 0.8\()\) the particle has horizontal velocity \(d x / d t=3 .\) What is its vertical velocity \(d y / d t\) at that point? \(\begin{array}{lllll}{\text { (A) }-3.875} & {\text { (B) }-3.75} & {\text { (C) }-2.25} & {\text { (D) } 3.75} & {\text { (E) } 3.875}\end{array}\)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free