Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

$$ \begin{array}{l}{\text { Analyzing Motion Data Priya's distance } D \text { in meters from a }} \\ {\text { motion detector is given by the data in Table 4.1. }}\end{array} $$ $$ \begin{array}{llll}{t(\text { sec) }} & {D(\mathrm{m})} & {t(\mathrm{sec})} & {D(\mathrm{m})} \\ \hline 0.0 & {3.36} & {4.5} & {3.59} \\ {0.5} & {2.61} & {5.0} & {4.15} \\ {1.0} & {1.86} & {5.5} & {3.99} \\ {1.5} & {1.27} & {6.0} & {3.37}\end{array} $$ $$ \begin{array}{llll}{2.0} & {0.91} & {6.5} & {2.58} \\ {2.5} & {1.14} & {7.0} & {1.93} \\ {3.0} & {1.69} & {7.5} & {1.25} \\ {3.5} & {2.37} & {8.0} & {0.67} \\ {4.0} & {3.01}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate when Priya is moving toward the motion detector; }} \\ {\text { away from the motion detector. }} \\ {\text { (b) Writing to Learn Give an interpretation of any local }} \\ {\text { extreme values in terms of this problem situation. }}\end{array} $$ $$ \begin{array}{l}{\text { (c) Find a cubic regression equation } D=f(t) \text { for the data in }} \\ {\text { Table } 4.1 \text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (d) Use the model in (c) for } f \text { to find a formula for } f^{\prime} . \text { Use this }} \\ {\text { formula to estimate the answers to (a). }}\end{array} $$

Short Answer

Expert verified
(a) Priya moves towards the motion detector from 0 to 2 seconds and 4 to 8 seconds. She moves away from it between 2 to 4 seconds. (b) Local extreme values represent when Priya changes her direction. (c & d) The precise cubic regression equation and its derivative will depend on the specific statistical software used, but they allow more precise confirmation of the answers to (a) and (b).

Step by step solution

01

Identify when Priya is moving toward or away from the motion detector

By inspecting the data, when D decreases, Priya is moving towards the motion detector. When D increases, she is moving away. For t=0 to 2 seconds, D is decreasing, so she is moving towards it. Then, for t=2 to 4 seconds, D is increasing, so she is moving away, and lastly, for t=4 to 8 seconds, D is decreasing so she is moving back towards it.
02

Interpret any local extreme values

The local extreme values are the minimum and maximum points. In our data, the minimum is at t=2 seconds, and the maximum is at t=4 seconds. These represent when Priya changes direction.
03

Find a cubic regression equation

Utilize statistical software or a graphing calculator to generate a cubic regression model from the given data set. This function, f(t), describes Priya's distance from the motion detector over time.
04

Calculate the derivative and estimate answers to (a)

Find the derivative of the model found in step 3, f'(t), to determine the rate of change at any given time. Use this to confirm the answers in step 1; when f'(t) is negative, D is decreasing, and when f'(t) is positive, D is increasing.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Inscribing a Cone Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3.

You may use a graphing calculator to solve the following problems. True or False If the radius of a circle is expanding at a constant rate, then its circumference is increasing at a constant rate. Justify your answer.

Airplane Landing Path An airplane is flying at altitude \(H\) when it begins its descent to an airport runway that is at horizontal ground distance \(L\) from the airplane, as shown in the figure. Assume that the landing path of the airplane is the graph of a cubic polynomial function \(y=a x^{3}+b x^{2}+c x+d\) where \(y(-L)=H\) and \(y(0)=0 .\) (a) What is \(d y / d x\) at \(x=0 ?\) (b) What is \(d y / d x\) at \(x=-L ?\) (c) Use the values for \(d y / d x\) at \(x=0\) and \(x=-L\) together with \(y(0)=0\) and \(y(-L)=H\) to show that $$y(x)=H\left[2\left(\frac{x}{L}\right)^{3}+3\left(\frac{x}{L}\right)^{2}\right]$$

Speed Trap A highway patrol airplane flies 3 mi above a level, straight road at a constant rate of 120 mph. The pilot sees an oncoming car and with radar determines that at the instant the line-of-sight distance from plane to car is 5 mi the linstant the distance is decreasing at the rate of 160 \(\mathrm{mph}\) . Find the car's speed along the highway.

Moving Shadow A light shines from the top of a pole 50 ft high. A ball is dropped from the same height from a point 30 ft away from the light as shown below. How fast is the ball's shadow moving along the ground 1\(/ 2\) sec later? (Assume the ball falls a distance \(s=16 t^{2}\) in \(t\) sec. $)

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free