Chapter 4: Problem 57
You may use a graphing calculator to solve the following problems. True or False Newton's method will not find the zero of \(f(x)=x /\left(x^{2}+1\right)\) if the first guess is greater than \(1 .\) Justify your answer.
Chapter 4: Problem 57
You may use a graphing calculator to solve the following problems. True or False Newton's method will not find the zero of \(f(x)=x /\left(x^{2}+1\right)\) if the first guess is greater than \(1 .\) Justify your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeCalculus and Geometry How close does the curve \(y=\sqrt{x}\) come to the point \((3 / 2,0) ?[\)Hint: If you minimize the square of the distance, you can avoid square roots.
Unique Solution Assume that \(f\) is continuous on \([a, b]\) and differentiable on \((a, b) .\) Also assume that \(f(a)\) and \(f(b)\) have op- posite signs and \(f^{\prime} \neq 0\) between \(a\) and \(b\) . Show that \(f(x)=0\) exactly once between \(a\) and \(b .\)
Multiple Choice A cylindrical rubber cord is stretched at a constant rate of 2 \(\mathrm{cm}\) per second. Assuming its volume does no change, how fast is its radius shrinking when its length is 100 \(\mathrm{c}\) and its radius is 1 \(\mathrm{cm} ?\) $$\begin{array}{ll}{\text { (A) } 0 \mathrm{cm} / \mathrm{sec}} & {\text { (B) } 0.01 \mathrm{cm} / \mathrm{sec}} 67 {\text{ (C) } 0.02 \mathrm{cm} / \mathrm{sec}}$\\\ {\text { (D) } 2 \mathrm{cm} / \mathrm{sec}} & {\text { (E) } 3.979 \mathrm{cm} / \mathrm{sec}}\end{array}
sign of \(f^{\prime}\) Assume that \(f\) is differentiable on \(a \leq x \leq b\) and that \(f(\)b\()<$$f$$(\)a\()\). Show that \(f^{\prime}\) is negative at some point between \(a\) and \(b\).
Minting Coins A manufacturer contracts to mint coins for the federal government. The coins must weigh within 0.1\(\%\) of their ideal weight, so the volume must be within 0.1\(\%\) of the ideal volume. Assuming the thickness of the coins does not change, what is the percentage change in the volume of the coin that would result from a 0.1\(\%\) increase in the radius?
What do you think about this solution?
We value your feedback to improve our textbook solutions.