Chapter 4: Problem 57
Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.