Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The Effect of Flight Maneuvers on the Heart The amount of work done by the heart's main pumping chamber, the left ventricle, is given by the equation $$W=P V+\frac{V \delta v^{2}}{2 g}$$ where \(W\) is the work per unit time, \(P\) is the average blood pressure, \(V\) is the volume of blood pumped out during the unit of time, \(\delta("\) delta") is the density of the blood, \(v\) is the average velocity of the exiting blood, and \(g\) is the acceleration of gravity. When \(P, V, \delta,\) and \(v\) remain constant, \(W\) becomes a function of \(g,\) and the equation takes the simplified form $$W=a+\frac{b}{g}(a, b\( constant \))$$ As a member of NASA's medical team, you want to know how sensitive \(W\) is to apparent changes in \(g\) caused by flight maneuvers, and this depends on the initial value of \(g\) . As part of your investigation, you decide to compare the effect on \(W\) of a given change \(d g\) on the moon, where \(g=5.2 \mathrm{ft} / \mathrm{sec}^{2},\) with the effect the same change \(d g\) would have on Earth, where \(g=32\) \(\mathrm{ft} / \mathrm{sec}^{2} .\) Use the simplified equation above to find the ratio of \(d W_{\mathrm{moon}}\) to \(d W_{\mathrm{Earth}}\)

Short Answer

Expert verified
The ratio of \(dW_{moon}\) to \(dW_{Earth}\) is \((32/5.2)^2\).

Step by step solution

01

Differentiate the equation

First step in finding \(dW_{moon}\) and \(dW_{Earth}\) is to differentiate the equation \(W = a + \frac{b}{g}\) with respect to \(g\). By doing so, one can obtain \(dW\), the infinitesimal change in \(W\) for a small change in \(g\). The derivative of a constant is 0 and the derivative of \(1/g\) is \(-1/g^2\). Therefore, the derivative of \(W\) with respect to \(g\) can be expressed as \(dW/dg = -b/g^2\).
02

Apply the definition of derivatives

By the definition of a derivative, \(dW = (dW/dg) * dg\). Thus, \(dW = \frac{-b}{g^2} * dg\).
03

Calculate \(dW_{moon}\) and \(dW_{Earth}\)

Now, we will substitute the values of \(g\) for moon and earth into the \(dW\) equation. For the moon, \(dW_{moon} = -b/(5.2)^2 * dg\). For Earth, \(dW_{Earth} = -b/(32)^2 * dg\). The \(dg\) terms in both equations will cancel each other in the ratio of \(dW_{moon}\) to \(dW_{Earth}\).
04

Compute the ratio

The ratio of \(dW_{moon}\) to \(dW_{Earth}\) is therefore \(dW_{moon}/dW_{Earth} = (-b/(5.2)^2 * dg)/(-b/(32)^2 * dg) = (32/5.2)^2.\)

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Geometric Mean The geometric mean of two positive numbers \(a\) and \(b\) is \(\sqrt{a b}\) . Show that for \(f(x)=1 / x\) on any interval \([a, b]\) of positive numbers, the value of \(c\) in the conclusion of the Mean Value Theorem is \(c=\sqrt{a b} .\)

Writing to Learn You have been asked to determine whether the function \(f(x)=3+4 \cos x+\cos 2 x\) is ever negative. (a) Explain why you need to consider values of \(x\) only in the interval \([0,2 \pi] . \quad\) (b) Is f ever negative? Explain.

Quartic Polynomial Functions Let \(f(x)=\) \(a x^{4}+b x^{3}+c x^{2}+d x+e\) with \(a \neq 0\) (a) Show that the graph of \(f\) has 0 or 2 points of inflection. (b) Write a condition that must be satisfied by the coefficients if the graph of \(f\) has 0 or 2 points of inflection.

Analyzing Derivative Data Assume that \(f\) is continuous on \([-2,2]\) and differentiable on \((-2,2) .\) The table gives some values of \(f^{\prime}(x)\) $$ \begin{array}{cccc}\hline x & {f^{\prime}(x)} & {x} & {f^{\prime}(x)} \\\ \hline-2 & {7} & {0.25} & {-4.81} \\ {-1.75} & {4.19} & {0.5} & {-4.25} \\\ {-1.5} & {1.75} & {0.75} & {-3.31} \\ {-1.25} & {-0.31} & {1} & {-2}\end{array} $$ $$ \begin{array}{rrrr}{-1} & {-2} & {1.25} & {-0.31} \\ {-0.75} & {-3.31} & {1.5} & {1.75} \\ {-0.5} & {-4.25} & {1.75} & {4.19}\end{array} $$ $$ \begin{array}{cccc}{-0.25} & {-4.81} & {2} & {7} \\ {0} & {-5}\end{array} $$ $$ \begin{array}{l}{\text { (a) Estimate where } f \text { is increasing, decreasing, and has local }} \\ {\text { extrema. }} \\ {\text { (b) Find a quadratic regression equation for the data in the table }} \\ {\text { and superimpose its graph on a scatter plot of the data. }} \\ {\text { (c) Use the model in part (b) for } f^{\prime} \text { and find a formula for } f \text { that }} \\ {\text { satisties } f(0)=0 .}\end{array} $$

True or False If \(u\) and \(v\) are differentiable functions, then \(d(u v)=d u d v .\) Justify your answer.

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free