Chapter 4: Problem 55
Multiple Choice What is the maximum area of a right triangle with hypotenuse 10? \(\begin{array}{llll}{\text { (A) } 24} & {\text { (B) } 25} & {\text { (C) } 25 \sqrt{2}} & {\text { (D) } 48} & {\text { (E) } 50}\end{array}\)
Chapter 4: Problem 55
Multiple Choice What is the maximum area of a right triangle with hypotenuse 10? \(\begin{array}{llll}{\text { (A) } 24} & {\text { (B) } 25} & {\text { (C) } 25 \sqrt{2}} & {\text { (D) } 48} & {\text { (E) } 50}\end{array}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeGroup Activity In Exercises \(39-42,\) sketch a graph of a differentiable function \(y=f(x)\) that has the given properties. $$\begin{array}{l}{\text { A local minimum value that is greater than one of its local maxi- }} \\ {\text { mum values. }}\end{array}$$
Multiple Choice Two positive numbers have a sum of 60. What is the maximum product of one number times the square of the second number? (a) 3481 (b) 3600 (c) 27,000 (d) 32,000 (e) 36,000
Expanding Circle The radius of a circle is increased from 2.00 to 2.02 \(\mathrm{m} .\) (a) Estimate the resulting change in area. (b) Estimate as a percentage of the circle's original area.
Motion on a Line The positions of two particles on the \(s\) -axis are \(s_{1}=\sin t\) and \(s_{2}=\sin (t+\pi / 3),\) with \(s_{1}\) and \(s_{2}\) in meters and \(t\) in seconds. (a) At what time \((\mathrm{s})\) in the interval \(0 \leq t \leq 2 \pi\) do the particles meet? (b) What is the farthest apart that the particles ever get? (c) When in the interval \(0 \leq t \leq 2 \pi\) is the distance between the particles changing the fastest?
Moving Shadow A man 6 ft tall walks at the rate of 5 \(\mathrm{ft} / \mathrm{sec}\) toward a streetlight that is 16 \(\mathrm{ft}\) above the ground. At what rate is the length of his shadow changing when he is 10 \(\mathrm{ft}\) from the base of the light?
What do you think about this solution?
We value your feedback to improve our textbook solutions.